Listening to What We’re Seeing

Diana G. Oblinger, Ph.D.

Context
• Meaning is shaped by:
 ? People
 ? Culture
 ? Technology
 ? Our understanding of education

Today’s learners
• Digital
• Connected
• Experiential
• Immediate
• Social

Net gen learning preferences
• Peer-to-peer
• Interaction & engagement
• Visual
• Things that matter

Time-constrained learners
• 35% of undergraduates are adult learners
• 87% commute
• 80% work
• 31% of enrollment increases will be in adult learners

Learners

Copyright Diana G. Oblinger, 2006. This work is the intellectual property of the author. Permission is granted for this material to be shared for non-commercial, educational purposes, provided that this copyright statement appears on the reproduced materials and notice is given that the copying is by permission of the author. To disseminate otherwise or to republish requires written permission from the author.
Types of learning

- Implicit
 - Information is acquired effortlessly or unconsciously (speech patterns; social attitudes)
 - Enables adaptation to new environments by being in them, observing and interacting
- Informal
 - Learning occurs at home, work, among peers
 - Over a lifespan, 90% of time is available for informal learning (79% for school age children)
 - Involves skills and development of an identity (“learning to be”)
 - Legitimate Peripheral Participation
- Formal

Neuroplasticity

- The lifelong ability of the brain to reorganize neural pathways based on new experiences
- Stimuli and activity change brain structures; the brain changes and organizes itself based on the inputs it receives
- Different developmental experiences impact how people think

Children age 6 and under

- 2:01 hours / day playing outside
- 1:58 hours using screen media
- 40 minutes reading or being read to
- 48% of children have used a computer
- 27% 4-6 year olds use a computer daily
- 39% use a computer several times a week
- 30% have played video games

Kaiser Family Foundation, 2003

Culture

- Culture is a system of
 - Shared beliefs
 - Values
 - Customs
 - Behaviors
- Students are often harbingers of social change
 - Relationships and social interaction
 - Self-expression
 - Multiple media
 - Meaning in the network

Multimodal communication

- The Internet is a primary communication tool
 - 81% email friends and relatives
 - 70% use instant messaging to keep in touch
 - 56% prefer the Internet to the telephone
- Communication with images
 - Cell phones
 - Flickr
- Communicating location
 - GPS
 - Finding others in proximity
Do-it-yourself

- People are doing more things for themselves online
 - Online banking
 - Online shopping
 - Learning

Informal learning

- Organic
- Contextualized
- Activity and experience-based
- Self-activated, under learner’s control
- Open-ended engagement

Web as information universe

- 34 million blogs (est.)
- 32 million blog readers
- 400,000 posts per day
- 16,000 posts per hour

Amateurs as authorities

- 5 hours: amount of time an 8th grader plays video games per week
- 77%: By high school, the percentage of students who have played games
- 69% have played games since elementary school
- 100%: By college, nearly all students have experienced games
- 710 million players worldwide
- $10 billion: Gaming industry revenue in 2004

Choice

- MP3 players
 - 22 million American adults have MP3 players
 - 6 million have downloaded podcasts or Internet radio programs
 - Podcasting is expected to reach 12.3 million households by

Timeshifting (e.g., Tivo)

- Choose what you want to watch
- Choose when you watch
- Fast forward or skip

Is it age or IT?

- How do you write most documents? Long-hand or at a keyboard?
- Are you constantly connected? Laptop? PDA? Cell phone?
- How many windows are typically open on your computer?
- Are you a multitasker?
- Do you play video or computer games?
- Do you download music?
- Does your cell phone have a camera?
Technology

Rate of change

Interfaces shaping learning

- World to the desktop: access to
 - Distant experts
 - Collaboration
 - Mentors
 - Communities of practice
- Alice in Wonderland, multi-user virtual environment
 - Participants and avatars and artifacts interact
 - Shared virtual environments
- Ubiquitous computing
 - Wireless devices infuse resources in the real world
 - Smart objects; intelligent contexts

Implications

Connecting with students

- Be engaging; challenge us
- Be responsive: answer voice mails and emails; office hours still matter
- Be seen: we’d like to see you and get to know you outside of class
- Set boundaries: tell us when you’re available
- Be an active participant in class; you are excited about the subject
- Ask students what they think
- Not everything needs to be
Network over content

- Rapid knowledge growth
- The information pace is too rapid for the current model of learning
- Learners will move into different—possibly unrelated—fields over their lives
- Personal knowledge is comprised of a network
- Informal learning is eclipsing formal learning

Social connections

- Social network
- Build your own profile
- Connect with other professionals
- Search for former classmates
- Find potential employees
- Experts’ knowledge is organized around people and concepts

Connecting in virtual worlds

- Students meet and interact with others
- Hands-on learning; apply knowledge and skills in the game
- Rehearsal of skills
- Feedback and help, record-keeping, progress reports
- Role modeling, observation learning
- Interactivity
- Networking
- Interpersonal and social dynamics

Collaboration by design

- Students meet and interact with others
- Hands-on learning; apply knowledge and skills in the game
- Rehearsal of skills
- Feedback and help, record-keeping, progress reports
- Role modeling, observation learning
- Interactivity
- Networking
- Interpersonal and social dynamics

Hallway vs. passageway

- Engaging
Active and collaborative

- SCALE-UP: Student Centered Activities for Large Enrollment Undergraduate Programs
- Class time spent on tangibles and ponderables
- Problem solving, conceptual understanding and attitudes are improved
- Failure rates are reduced dramatically
- "The job is not to teach physics but to teach thinking."

--Beichner & Saul, 2003

Studio approach

All work in progress is public
Thinking is shared
Learn from struggles & success
See choices, constraints, consequences
Social & intellectual practices visible
Enculturation into practice

--Brown, 2005

Participatory

- Goal is to live as long as possible and reproduce
- Ability to survive is linked to the genome; must figure out the genetics involved
- Mating is by "beam ing" between hand-helds

--Klopfer & Squire, 2003

Integrative

- Players briefed about rash of local health problems linked to the environment
- Provided with background information and "budget"
- Need to determine source of pollution by drilling sampling wells and ultimately remediate with pumping wells
- Work in teams representing different interests (EPA, industry, etc.)
Learning-to-be
- National Ecological Observatory Network
- Remote & collaborative environments
- Widely distributed sensors
- Real-time data collection and analysis

Simulations
- Conduct virtual experiments
- Warehouse of parts allows students to create their own experiments
- Lab prep

Experiential

Reconstruction

Formal vs informal
Social

• Students spend more time out of class than in it
• “Capture time” is particularly important for non-residential students
• Learning occurs through conversations, web surfing, social interactions
• Group work
• Spontaneous interactions
• Mingle, share, make connections

Library or information commons

• Space for interaction and exchange
• Food and talk allowed
• Access to integrated resources and support (writing, IT, reference)

Seeing people, meeting people

• Making people visible to each other by using atria, cafés, or windows
• Movable furniture so small groups can form spontaneously
• Wireless access

Harmonize space with learning theory

• Flexibility (quick reconfiguration)
• Comfort (discomfort distracts from learning)
• Sensory stimulation (antiseptic environments don’t focus attention)
• Technology support
• De-centered (no “front” of the room; spaces center on learning, not experts)
• Holistic (the entire campus is a learning environment)

Suggestions
#1: Identify principles

- **Coverage model**: Learning is not just about covering content; it's about developing competency.
- **Knowledge construction**: Reasoning is not linear, deductive or abstract but begins from the concrete and assembles a “mosaic”
- **Interactivity**: This is a connected, interactive generation; collaboration and interaction are important learning principles.
- **Formal & informal**: Learning must occur anywhere, anytime.
- **It's not technology alone**: Technology must support good pedagogy.

#2: Involve students

- **Students as consumers with a choice**.
- **They have a unique perspective on their learning environment**.
- **Input ranges from opinion to action**.
- **Language and perspectives differ; not all students are alike**.
- **“Spend a day in their shoes”**.

#3: Consider the options

- **Visual**: less reading, more visuals.
- **Mixed delivery**: mix online, face-to-face.
- **Engaging**: involvement similar to problem-solving or games.
- **Manageable**: bite-sized chunks of information.
- **Real**: capitalizes on real-world problems; information can be applied to real situations.
- **Social**: interaction with others.

#4: Redefine space

- **Space shaped by learning rather than by instruction**.
- **Socially catalytic space**.
- **A shift from classrooms to learning complexes**.

#5: Align technology with pedagogy

- Don't mistake use for integration.
- Understand what you want students to do.
- Consider the strengths and weaknesses of specific approaches.
- Align media with learning outcomes and pedagogy.

The goal is an organization that is constantly making its future rather than defending its past.

- Hamel & Valiksngas, 2003